Eilenberg-Moore categories and Kan-injectivity

Lurdes Sousa

Polytechnic Institute of Viseu

&

Centre for Mathematics of the University of Coimbra

Samuel Eilenberg Centenary Conference, Warsaw, July 22-26, 2013

 \mathcal{X} poset enriched category: Hom(X,Y) are posets, and, for $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{k} W$, $g \leq h \Rightarrow kgf \leq khf$ \mathcal{X} poset enriched category: Hom(X,Y) are posets, and, for $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{k} W$, $g \leq h \Rightarrow kgf \leq khf$

X is left-Kan injective w.r.t. $h: A \to A'$ if every $f: A \to X$ admits f/h:

(1)
$$f = (f/h) \cdot h$$

(2) If
$$A \xrightarrow{h} A'$$
 then $f/h \leq g$.
 $f \not \leq g$
 X

Examples of injectivity in Top_0 :

$\mathcal{H} \subseteq continuous$ maps	spaces injective wrt ${\cal H}$
embeddings	continuous lattices [D. Scott, 1972]

Examples of injectivity in Loc:

$\mathcal{H} \subseteq$ localic maps	spaces injective wrt ${\cal H}$
one to one which preserve finite	stably locally compact localos
suprema	(=retracts of coherent locales)
	P. Johnstone, 1981

Examples of injectivity in Top_0 :

$\mathcal{H}\subseteqcontinuous$ maps	spaces injective wrt ${\cal H}$
embeddings	continuous lattices
	[D. Scott, 1972]
dense embeddings	continuous Scott domains
	[D. Scott, 1980]

Examples of injectivity in Loc:

$\mathcal{H} \subseteq$ localic maps	spaces injective wrt ${\cal H}$
one-to-one	stably supercontinuous lattices
	[B. Banaschewski, 1985]
one-to-one which preserve finite	stably locally compact locales
suprema	(=retracts of coherent locales)
	[P. Johnstone, 1981]

M. Escardó and others in a number of papers in the late 90's observed that:

In these examples, and others, the Kan-injective spaces are just the Eilenberg-Moore algebras of a Kock-Zöberlein (KZ) monad [A. Kock, 1995].

[M.Carvalho and L.S., 2011]:

Kan-injectivity also for morphisms

 $X \xrightarrow{k} Y$ is left Kan-injective w.r.t. $A \xrightarrow{h} A'$ if X and Y are so, and, for every $A \xrightarrow{f} X$, we have

Given $\mathcal{H} \subseteq Mor(\mathcal{X})$,

LInj \mathcal{H} := subcategory of all objects and morphisms left Kan-injective w.r.t. all morphisms of \mathcal{H}

Left Kan-injective subcategories (i.e., of the form $LInj \mathcal{H}$) are <u>non-full</u>, in general.

A subcategory S of X is said to be closed under left adjoint retracts if, for every commutative square, with $g \in S$,

the morphism q' belongs to \mathcal{S} .

Subcategories LInj \mathcal{H} are closed under left adjoint retracts.

A subcategory \mathcal{A} of \mathcal{X} is said to be KZ-reflective if it is reflective and the left adjoint $F : \mathcal{A} \to \mathcal{X}$ is locally monotone and fulfils the inequality

 $F\eta_X \leq \eta_{FX}$, for every $X \in \mathcal{X}$.

A subcategory \mathcal{A} of \mathcal{X} is an Eilenberg-Moore category for a KZ-monad over \mathcal{X} iff it is KZ-reflective and closed under left adjoint retracts.

These subcategories are always of the form $LInj \mathcal{H}$.

Conversely: When is LInj \mathcal{H} an Eilenberg-Moore category for a KZ-monad?

(Left) Kan-injective subcategory problem:

When is $LInj \mathcal{H}$ a KZ-reflective subcategory?

Joint work with Jiří Adámek and Jiří Velebil

Left Kan-injective subcategories are closed under weighted limits. In particular, they are closed under inserters.

Given a pair of morphisms $X \xrightarrow{g}_{f} Y$ in \mathcal{X} , the inserter of f and g, denoted $\operatorname{ins}(f,g)$, is a morphism $i: I \to X$ such that

(1) $f \cdot i \leq g \cdot i$

(2) If $j: J \to X$ also fulfils $f \cdot j \leq g \cdot j$ then there is a unique $t: J \to I$ such that j = it.

$$I \xrightarrow{i} X \xrightarrow{g} Y$$

$$J \xrightarrow{j} J$$

(3) *i* is an order-monomorphism, that is, $i \cdot a \leq i \cdot b \Rightarrow a \leq b$.

A subcategory \mathcal{A} of \mathcal{X} is said to be an inserter-ideal if for every inserter i = ins(f,g) in \mathcal{X}

if f belongs to \mathcal{A} , then also $i: I \to X$ belongs to \mathcal{A} .

Left Kan-injective subcategories are inserter-ideals.

Every reflective, inserter-ideal subcategory is KZ-reflective.

Consequently:

Left Kan-injective subcategory problem:

When is $LInj \mathcal{H}$ a reflective subcategory?

Kan-Injective Reflection Construction (for a set $\mathcal{H} \subseteq Mor(\mathcal{X})$)

Goal: To obtain a reflection of X into $LInj \mathcal{H}$

$$X = X_0 \xrightarrow{x_{01}} X_1 \xrightarrow{x_{12}} X_2 \xrightarrow{} \cdots$$

assuming that \mathcal{X} has weighted colimits:

 $X_0 = X.$

For *i* a limit ordinal, $X_i = \operatorname{Colim}_{j < i} X_j$.

For *i* even, steps $i \mapsto i+1$ and $i+1 \mapsto i+2$ as follows:

Kan-Injective Reflection Construction. $X = X_0 \xrightarrow{x_{01}} X_1 \xrightarrow{x_{12}} X_2 \longrightarrow \cdots$

<u>Step</u> $i \mapsto i + 1$. $x_{i,i+1}$ is the wide pushout of all pushouts of $h \in \mathcal{H}$ along some f with codomain X_i :

<u>Step $i + 1 \mapsto i + 2$ </u>. $x_{i+1,i+2}$ is the cointersection of all coinserters coins $(x_{j+1,i+1} \cdot (f//h), g)$, for $j \leq i, j$ even, and $x_{j,i+1} \cdot f \leq g \cdot h$:

If the Kan-Injective Reflection Chain

$$X = X_0 \xrightarrow{x_{01}} X_1 \xrightarrow{x_{12}} X_2 \xrightarrow{} \dots X_i \xrightarrow{} \dots$$

converges at some even ordinal k (that is, $x_{k,k+2}$ is an isomorphism), then

$$X \xrightarrow{x_{0k}} X_k$$

is a reflection of X into $LInj \mathcal{H}$.

Let \mathcal{X} be a poset enriched category with weighted colimits and a factorisation system $(\mathcal{E}, \mathcal{M})$ such that $\mathcal{E} \subseteq Epi(\mathcal{X}), \mathcal{M} \subseteq OrderMono(\mathcal{X}),$ and \mathcal{X} is \mathcal{E} -cowellpowered.

We say that \mathcal{X} is locally ranked if, in addition, every object X of \mathcal{X} has rank λ , for some regular cardinal λ ; that is, the hom-functor hom $(X, _)$ preserves λ -directed unions of monomorphisms of \mathcal{M} .

Let \mathcal{X} be a poset enriched category with weighted colimits and a factorisation system $(\mathcal{E}, \mathcal{M})$ such that $\mathcal{E} \subseteq Epi(\mathcal{X}), \mathcal{M} \subseteq OrderMono(\mathcal{X}),$ and \mathcal{X} is \mathcal{E} -cowellpowered.

We say that \mathcal{X} is locally ranked if, in addition, every object X of \mathcal{X} has rank λ , for some regular cardinal λ ; that is, the hom-functor hom $(X, _)$ preserves λ -directed unions of monomorphisms of \mathcal{M} .

For every set \mathcal{H} of a locally ranked poset enriched category, the Kan-injective Subcategory Problem has an affirmative answer, that is, LInj \mathcal{H} is reflective.

Let \mathcal{X} be a poset enriched category with weighted colimits and a factorisation system $(\mathcal{E}, \mathcal{M})$ such that $\mathcal{E} \subseteq Epi(\mathcal{X}), \mathcal{M} \subseteq OrderMono(\mathcal{X}),$ and \mathcal{X} is \mathcal{E} -cowellpowered.

We say that \mathcal{X} is locally ranked if, in addition, every object X of \mathcal{X} has rank λ , for some regular cardinal λ ; that is, the hom-functor hom $(X, _)$ preserves λ -directed unions of monomorphisms of \mathcal{M} .

For every set \mathcal{H} of a locally ranked poset enriched category, the Kan-injective Subcategory Problem has an affirmative answer, that is, $\operatorname{LInj}\mathcal{H}$ is the Eilenberg-Moore category of a KZ-monad over the category.

Weak left Kan-injectivity

Given $h: A \to A'$,

X is said to be weakly left Kan-injective w.r.t. h, if every $f : A \rightarrow X$ has a left Kan-extension:

 $k: X \to Y$ is said to be weakly left Kan-injective w.r.t. h, if it preserves left Kan extensions, i.e., (kf)/h = k(f/h) (with X and Y w. I. K. inj.)

 $\text{LInj}_{w}\mathcal{H} := \text{ subcategory of all objects and morphisms} \\ \text{ weakly left Kan injective w.r.t. } \mathcal{H}$

In every locally ranked poset enriched category, given a set ${\cal H}$ of morphisms there exists a class $\overline{\cal H}$ of morphisms with

 $\operatorname{LInj}_{w}\mathcal{H} = \operatorname{LInj}\overline{\mathcal{H}}.$